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Abstract- To address future NASA challenges, integration of 
multiple source data will be a key component, and as a first step 
towards this goal, very accurate registration of multi-sensor data 
is the first requirement for such integration. While navigation 
often refers to “systematic correction”, image registration refers 
to “precision correction.” The systematic correction is model-
based, while precision correction is feature-based. Starting from 
the results of the systematic correction (usually accurate within a 
few pixels), precision-correction utilizes selected features or 
control points to refine the geo-location accuracy within one 
pixel or a sub-pixel. Our work focuses on precision correction or 
automatic image registration, with the goal of achieving sub-
pixel accuracy. We have built a modular registration framework 
in which different components of the registration process can be 
assessed and then combined in an optimal manner as a function 
of the application, the required accuracy and the available 
computational capabilities. 
 

I. INTRODUCTION 
 Two of the main goals of NASA mission are "to understand 
and protect our home planet" and "to explore the universe and 
search for life." For these two goals, it is very important to 
understand Earth system processes and to build accurate 
prediction models. But such an understanding will also be 
beneficial to NASA's mission to explore the universe by 
providing knowledge, experience and technology applicable 
to future observing systems anywhere in the solar system. In 
addition, future decision support systems, intelligent sensors 
and adaptive constellations will rely on real- or near-real-time 
interpretation of Earth observation data, both on-board, in-situ 
or from ground-based Direct Readout stations. The more 
expert the system and far-reaching the application, the more 
important will it be to obtain accurate data.  

 
 To address such challenges, integration of multiple sensor 
data is a key component, and as a first step towards this goal, 
very accurate registration of multi-sensor data is the first 
requirement for such integration. Figures 1 and 2 illustrate 
this scenario for Earth Science and for Exploration planning, 
where multi-source integration provide improved and more 

accurate information for either navigation models, prediction 
models, or planning and decision making systems. 
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Figure 1 

Earth Science Multi-Source Integration 
 
 The goal of our project is to develop and assess image 
registration methodologies that will enable this accurate 
multi-source integration. While navigation often refers to 
“systematic correction”, image registration refers to 
“precision correction.” The systematic correction is model-
based, while precision correction is feature-based. Starting 
from the results of the systematic correction (usually accurate 
within a few pixels), precision-correction utilizes selected 
features or control points to refine the geo-location accuracy 
within one pixel or a sub-pixel. For many applications, it is 
very important to reach the sub-pixel accuracy that can be 
achieved by precision correction. As an example, studies 
performed on MODIS simulated data have shown that 1 pixel 
misregistration could imply 50% error in NDVI computation 
[1]. Our work focuses on precision correction or automatic 
image registration, with the goal of addressing the three main 
challenges of image registration: 



1. providing methods that can handle mono- and multi-sensor 
data with multi-resolution from a spatial, spectral or 
temporal point of view, 

2. achieving sub-pixel accuracy, 
3. defining reliable accuracy measurements based on: 

• synthetic data 
• manual user registration 
• down-sampled  high-resolution data 
• consistency studies. 

In our experiments, we assume that the data have already been 
corrected according to a navigation model and are at a level 
equivalent to the EOS-level 1B. Assuming that the results of 
the systematic correction are accurate within a few pixels, our 
precision-correction algorithms utilize selected image features 
or control points to refine this geo-location accuracy within one 
pixel or a sub-pixel. Currently, there is a large quantity of 
potential image registration methods that have been developed 
for aerial or medical images and that are applicable to remote 
sensing images [2,3]. But there is no consolidated approach to 
select the most appropriate method for a given remote sensing 
application.  
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Figure 2 

Planning and Decision Making for Planetary Exploration 
 
 This paper describes previous and current experiments, and 
introduces a modular registration framework where various 
choices for each of these steps can be tested independently.  
Performance of these algorithms has been evaluated on 
synthetic data as well as multi-temporal Landsat data and 
multi-sensor data from several EOS Land Validation Core 
Sites, including data from the IKONOS, Landsat-7, MODIS, 
and SeaWIFS sensors. The modular framework and 
preliminary results are described in section III. 
 

II. PRIOR IMAGE REGISTRATION EXPERIMENTS 
 As a general definition, image registration is described as 
the process that determines the most accurate match between 
two or more images, and can be defined by three main steps:  

1. extraction of features to be used in the matching process, 
2. feature matching strategy and metrics, 
3. resampling or indexing of the data.  
 

Many choices are available for each of the previous three 
steps. In earlier work, we investigated step (1), first 
focusing on correlation-based methods, then looking at 
optimization-based methods.  

 
  (A) Correlation-Based Experiments 
Using correlation as a similarity metrics, our first 
experiments focused on features assessment, This work 
showed that, as expected, edges or edge-like features like 
wavelets are more robust to noise and local intensity 
variations. Wavelet features that are considered as potential 
registration features are either low-pass features, which 
provide a compressed version of the original data and some 
texture information, or high-pass features, which provide 
detailed edge-like information, Comparing edges and 
wavelets, we observed that orthogonal wavelet-based 
registration was usually faster although not always as 
accurate than a full-resolution edge-based registration [4]. 
This was obtained by exploiting the multi-resolution nature of 
wavelets, where an approximation of the transformation is 
computed at very low-spatial resolution, and then iteratively 
refined at higher and higher resolutions. But because of this 
decimation, orthogonal wavelets lose the invariance to 
translation since features can migrate between frequency 
subbands. By lack of translation (resp. rotation) invariance, 
we mean that the wavelet transform does not commute with 
the translation (resp. rotation) operator. To study the effects 
of translation, we conducted a first study [5] that 
quantitatively assessed the use of orthogonal wavelet sub-
bands as a function of features’ sizes. The results showed that 
high-pass sub-bands are more sensitive to translation than 
low-pass sub-bands which are relatively insensitive provided 
that the features of interest have an extent at least twice the 
size of the wavelet filters. A second study [6] investigated the 
use of an overcomplete frame representation, the “Steerable 
Pyramid” [7]. It was shown that, as expected and due to their 
translation- and rotation- invariance, Simoncelli’s steerable 
filters perform better than Daubechies’ filters. Rotation errors 
obtained with steerable filters were minimum, independent of 
rotation size or noise amount. Noise studies also reinforced 
the results that steerable filters show a better robustness to 
larger amounts of noise than do orthogonal filters. Another 
result of this study is that Simoncelli band-pass features are 
more robust, but less accurate than low-pass features.  

 
  (B) Optimization-Based Experiments  
This earlier work focusing on correlation-based methods 

used exhaustive search. One of the main drawbacks of this 
method is the prohibitive computation times when the 
number of transformation parameters increases (e.g., affine 
transformation vs. shift-only), or when the size of the data 
increases (full size scenes vs. small portions, multi-band 



processing vs. mono-band). To answer this concern, we 
looked at different features using an optimization-based 
method. 
 

In these experiments, we chose an optimization based on 
a gradient descent method and using an L2 norm as 
similarity metrics.  Using this matching methodology, we 
compared features obtained from two different multi-
resolution decompositions, the Simoncelli steerable 
pyramid and the Spline decompositon [8]. While the 
Simoncelli steerable pyramid produces low-pass and band-
pass features, the Spline pyramid only produces low-pass 
features. Results then showed than for a gradient 
optimization matching, Simoncelli/low-pass features have a 
better radius of convergence, while Simoncelli/band-pass 
features are the best in terms of accuracy and consistency, 
but than when they converge, the Spline features present 
the best accuracy.  
 

 (C) Similarity Measures Experiments 
 Using Simoncelli band-pass features as registration 
features, exhaustive search as well as a stochastic gradient 
optimization matching strategy (Spall’s algorithm [10]) 
were utilized to compare 2 similarity measures:  correlation 
and mutual information [9]. The results show that similarity 
peaks obtained with mutual information are sharper than 
those obtained with correlation; this can be important when 
we need to reach sub-pixel registration accuracy. 
Furthermore, when using mutual information with a 
stochastic gradient, results show an accuracy of 0.01 pixel 
on synthetic test data, 0.64 pixel on multi-temporal (cloudy) 
data, and 0.34 pixel on multi-sensor data. 
 
 Following these preliminary experiments focusing on one 
or another of the components of the registration process, the 
next step is then to perform systematic comparisons, where 
all the registration components can be combined in 
different ways and assessed on well-chosen test data.  
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Figure 3 

Modular Approach to Image Registration Combining Various Choices for Feature Extraction, Similarity Metrics and Matching Strategy 
 

III. A MODULAR IMAGE REGISTRATION FRAMEWORK 
 In order to perform these systematic studies and to enable 
new components to be tested in a rigorous fashion, we 
started building a modular image registration framework. 
The concept guiding this framework is that various 
components of the registration process can be combined in 
several ways in order to reach optimum registration on a 
given type of data and under given circumstances. Thereby, 
the purpose of this framework is double-fold: 
1. it represents a testing framework to: 

a. Assess various combinations of components 
as a function of the applications, 

b. Assess a new registration component 
compared to other known ones. 

2. it is be the basis of a registration tool where a user can 
“schedule” a combination of components as a function 

of the application at hand, the available computational 
resources and the required registration accuracy. 

 
 Figure 3 illustrates this concept, where a registration 
algorithm is defined as the combination of a set of features, 
a similarity measure, and a matching strategy. In our 
current framework: 
- features can be either gray levels, Low-Pass features from 
Simoncelli steerable filters decomposition or from a Spline 
decomposition, or Simoncelli Band-Pass features, 
- similarity metrics can be either cross-correlation, the L2 
Norm, Mutual Information or an Hausdorff distance, 
- matching strategies are either based on a Fast Fourier 
Correlation, three different types of optimization - pure 
gradient descent, a Marquard-Levenberg approach 
(developed by Thevenaz et al [10], denoted TRU in the 



remaining of this paper) or a stocchastic gradient approach 
(developed by Spall et al) [9], and a Robust Feature 
Matching approach [11]. 
An early set of these combination algorithms was tested on 
three different datasets, using transformations composed of a 
rotation, a translation and an isometric scaling (i.e., scale 
factor similar in both x- and y-directions. By combining these 
different components, five algorithms were developed: 
• Method 1: Gray Levels matched by Fast Fourier 
Correlation [12]. 
• Method 2: Gray Levels matched by gradient descent [13] 
using a least squares criterion. 
• Method 3: Spline or Simoncelli (Band- or Low-Pass) 
Pyramid features matched by optimization using "TRU” 
[14]. 
• Method 4: Simoncelli wavelet features matched by 
optimization of the mutual information criterion using Spall 
algorithm [9]. 
• Method 5: Simoncelli wavelet features using a robust 
feature matching algorithm and a generalized Hausdorff 
distance [11,15]. 
 

 
Figure 4 - Synthetic Test Data 

Reference Image and 3 Transformed Input Images 
 
For some of the methods (1 and 5), registration is 

computed on individual sub-images and then integrated by 
computing a global transformation, for the others (2-4), 
registration is computed on the entire images but iteratively, 
using the pyramid decompositions. 

 
Three different datasets were utilized for the study.  
 

   (A) Synthethic Dataset Experiments 
The first dataset is synthetically created using a 512x512 

section of a Landsat-TM (band 4) of a Pacific Northwest 
scene. This reference image is transformed using the 
combination of a scaling, a rotation and a translation. Figure 
4 shows the reference data with three examples of 

transformed images. Both rotation and scaling are done with 
respect to the center of the image. For this study, no noise is 
added to the dataset, After the transformation is applied, the 
256x256 centers of the transformed images are extracted and 
registered to the 256x256 center of the original reference 
image. Seven different transformed images have been created 
using scales in the range [0.9, 1.1], rotations varying between 
0 and 3 degrees, and translations between 0 and 4 pixels in 
each direction. Table 1 shows the results of 4 of the 
algorithms (Methods 1,2,3,4) applied on this dataset. We can 
notice that most results are within at most 1/3 pixel of the 
"truth transformation." 

 
Synthetic Method 1 Method 3a Method 3b Method 3c Method 4

Data wrt r256 Fast Correl TRU/Spline TRU/SimB TRU/SimL MI/Spall
r256
Scale 1.0000 1.0000 1.0000 1.0000 1.0001

Rotation 0.0000 0.0000 0.0000 0.0000 0.0122
Shift-x 0.0000 0.0000 0.0000 0.0000 -0.0098
Shift-y 0.0000 0.0000 0.0000 0.0000 -0.0108
i256_r2

Scale 0.9998 0.0000 0.9999 0.9999 1.0001
Rotation 1.9922 2.0001 1.9977 1.9977 2.0820
Shift-x -0.0723 0.0007 -0.0002 -0.0002 -0.0070
Shift-y 0.0662 0.0005 -0.0001 -0.0012 0.0278

i256_tx1.3_ty3.7
scale 0.9997 1.0000 0.9994 1.0000 1.0000

Rotation -0.0294 -0.0003 -0.0019 -0.0006 0.0011
Shift-x 1.0131 1.3001 1.2953 1.2996 3.7071
Shift-y 3.9321 3.6983 3.6955 3.6996 1.2908

i256_sc1.1
Scale 1.0996 1.1000 1.0999 1.1000 1.0999

Rotation -0.0001 0.0002 0.0000 -0.0003 0.0049
Shift-x 0.0002 0.0004 -0.0011 0.0001 -0.0117
Shift-y 0.0005 -0.0001 0.0043 -0.0001 0.0112

i256_sc0.9
Scale 0.9014 0.9000 0.9001 0.9000 0.9001

Rotation -0.0392 0.0000 0.0005 0.0000 0.0080
Shift-x 0.0000 -0.0002 0.0002 0.0003 -0.0251
Shift-y -0.0003 -0.0005 -0.0022 -0.0013 -0.0099

i256_r2_tx1.3_ty3.7
Scale 1.0001 1.0000 1.0000 1.0000 1.0000

Rotation 2.0131 2.0002 1.9992 2.0000 2.0004
Shift-x 1.2172 1.3001 1.2981 1.3009 1.3049
Shift-y 3.7748 3.6997 3.6950 3.7027 3.7052

i256_sc0.9_r5_tx2.25
Scale 0.9018 0.9000 0.9616 0.8999 0.9000

Rotation 4.9566 4.9996 3.8120 4.9991 5.0080
Shift-x 2.2876 2.2505 -4.3352 2.2513 2.2517
Shift-y 0.3609 -0.0014 4.7762 -0.0026 0.0034

56_sc1.1_r3_tx3.1_ty2.75
Scale 1.1002 1.1000 1.0632 1.1000 1.1000

Rotation 2.9922 3.0001 -3.0035 3.0002 2.9981
Shift-x 2.7988 3.1000 -3.2838 3.1002 3.0782
Shift-y 2.6428 2.7500 -8.8802 2.7503 2.7507  

Table 1 - Rsults of 7 Algorithms on Synthetic Data 

 
 
  (B) Multi-Temporal Dataset Experiments 
The multi-temporal dataset has been acquired over two 

areas, Central Virginia and the Washington DC/Baltimore 
area. For each area, one reference scene is chosen and 6 to 8 
reference chips (of size (256x256) are extracted. Also for 
each area, the dataset includes 4 input scenes known from 
their UTM (Universal Transverse Mercator projection) 
coordinates. From these coordinates, windows corresponding 
to each reference chip of that area are computed and 
extracted, and local chip/window registrations are performed 
using a robust feature matching method with a partial 
Hausdorff distance applied to Simoncelli/band-pass features 
[15]. Figure 5 shows a few examples of chip/window pairs. 
Then, for each pair of scenes, a global registration is being 
computed with a generalized Least Mean Squares method 
that combines all previous local registrations. Compared to 
manual registration, these multi-temporal experiments 



produced registration accuracies included between 0.21 and 
0.59 pixel.  

 

 
Figure 5 

Examples of Chip/Window Pairs for the DC/Baltimore Area 
 

   (C) Multi-Sensor Dataset Experiments 
The third dataset used in this study represents multi-sensor 

data acquired by two different sensors over four of the 
MODIS Validation Core Sites. The four sites represent four 
different types of terrain in the United States:  
• Coast Reserve area with the Virgina site, data acquired in 

October 2001.  
• Agricultural area with the Konza Prairie in the state of 

Kansas, data acquired July to August 2001. 
• Mountainous area with the CASCADES site, data 

acquired in September 2000. 
• Urban area with the USDA, Greenbelt, Maryland, site, 

data acquired in May 2001. 
Figures 6 and 7 show examples of these data. 
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Figure 6 

ETM and IKONOS data of the Virginia Coastal Area 
 

 
The two sensors and their respective bands and spatial 
resolutions involved in this study are: 
1. IKONOS Bands 3 (Red) and 4 (Near-Infrared), spatial 

resolution of 4 meters per pixel,  
2. Landsat-7/ETM+ Bands 3 (Red) and 4 (Near-Infrared), 

spatial resolution of 30 meters per pixel. 

IKONOSETM+

 
Figure 7 

ETM and IKONOS data of the CASCADES Mountainous Area 
 

(Future multi-sensor studies on the same sites will also 
involve MODIS and SeaWIFS data). In this study, wavelet 
decomposition was utilized not only to compute registration 
features, but also to bring various spatial resolution data to 
similar resolutions, by performing recursive decimation by 
2. For example, after 3 levels of wavelet decomposition, the 
IKONOS spatial resolution is brought to 32 meters that, 
compared to the Landsat spatial resolution, corresponds to a 
scaling of 1.07. This will be the scaling expected when 
registering IKONOS to Landsat data in our study. Overall, 
for each site, five different registrations are performed and 
results are shown in Tables 2 for two of the sites, Virginia-
Coast and Cascades-Mountainous, and for Methods 1 to 4.  

 
Method 1 Method 2 Method 3a Method 3b Method 3c Method 4

Fast Correl Grad Desc TRU/Spline TRU/SimB TRU/SimL MI/Spall
IKONOS/Red-IKONOS/NIR

Scale 1.0000 1.0000 1.0000 0.9999 1.0000 1.0006
Rotation -0.0008 0.0282 -0.0005 0.0017 -0.0002 0.0811
Shift-x 0.0072 -1.5474 -0.1644 0.0523 -0.2421 0.9223
Shift-y -0.0542 1.6686 -0.4944 -0.5597 -0.5315 0.7505

IKONOS/Red-ETM/Red
Scale 1.0661 1.0638 1.0662 1.6094 1.0669 1.0661

Rotation 0.0013 0.1531 0.0204 -1.3397 0.0568 0.1040
Shift-x 12.8575 12.7673 12.9748 -105.3350 12.9902 13.0244
Shift-y 13.1722 12.4212 13.2198 83.6175 13.3562 14.1378

IKONOS/Red-ETM/NIR
Scale 1.0619 1.0893 1.0515 1.5185 3.0250 1.0664

Rotation -0.1210 0.6965 1.5185 7.5141 6.6137 0.0103
Shift-x 12.3951 13.5345 10.6674 -45.6183 -205.4730 12.2158
Shift-y 12.2179 13.4872 9.3905 69.9682 248.2180 13.1563

IKONOS/NIR-ETM/Red
Scale 1.0610 1.0679 1.0564 0.9886 1.0516 1.0674

Rotation -0.9030 2.1602 -1.0406 -0.5544 -1.1490 0.9718
Shift-x 10.3298 19.3508 27.7790 -1.5585 28.2731 16.0900
Shift-y 11.5491 17.7127 6.6591 -1.7722 6.5726 16.0972

IKONOS/NIR-ETM/NIR
Scale 1.0654 1.0681 1.0651 1.4050 1.0668 1.0663

Rotation -0.1093 0.0435 0.0111 3.7209 0.0375 0.0063
Shift-x 12.5909 12.1728 13.0008 -38.6769 12.9493 12.8556
Shift-y 12.8984 12.4887 13.1058 2.5245 13.2238 13.2462

ETM/Red-ETM/NIR
Scale 1.0000 0.9960 0.9998 0.9998 0.9997 1.0001

Rotation 0.0015 0.1464 -0.0146 -0.0136 -0.0214 -0.0020
Shift-x -0.0670 -2.3708 -0.2048 -0.2107 -0.2243 0.8507
Shift-y -0.0136 -24.6208 -0.4854 -0.5024 -0.6841 0.6654

VA_Coast

 
Table 2a - Results of 6 algorithms on the Virginia-Coast Area 

 
 For this study, no exact ground truth is available, but we 
expect the multi-modal intra-sensor registrations to be 
scale=1, rotation=0, translation=(0,0), and we expect a 
scale=1.07 for the IKONOS to Landsat registrations. The 
results of Tables 2 show that, as expected the registrations 
based on gray levels are less reliable on inter-band 
registrations than those based on edge-like features, but, 
when reliable, these results are more accurate. Also, since no 
ground truth was available for this dataset, consistency 
between algorithms was measured: we observed that most 
results were within 1/4 to 1/3 pixel of each other. Self-



consistency of 2 of the methods was also checked, by 
performing circular registrations: for example if 3 images A, 
B, and C are considered, registrations of pairs (A,B), (B,C) 
and (A,C) are compared. In this experiment, we observed that 
the tested algorithms were self-consistent within 1/8 pixel. 
 

Method 1 Method 2 Method 3a Method 3b Method 3c Method 4
Fast Correl Grad Desc TRU/Spline TRU/SimB TRU/SimL MI/Spall

IKONOS/Red-IKONOS/NIR
Scale 1.0000 1.0000 1.0000 1.0001 1.0000 1.0003

Rotation 0.0003 0.1580 0.0006 0.0009 0.0009 0.0177
Shift-x 0.0135 0.0025 -0.0240 -0.0362 -0.0464 0.0204
Shift-y 0.0135 -0.0001 -0.1603 -0.1827 -0.2090 0.0535

IKONOS/Red-ETM/Red
Scale 1.0644 1.0621 1.1006 1.0642 1.0646 1.0645

Rotation 0.0917 0.1137 -0.0500 0.0760 0.0703 0.1302
Shift-x 8.6744 8.1151 11.4319 8.6515 8.6323 8.7768
Shift-y 10.1616 9.2868 12.3680 10.0627 10.0836 10.0392

IKONOS/Red-ETM/NIR
Scale 1.0651 1.0641 0.9962 1.0649 1.0000 1.0640

Rotation 0.0883 0.1349 -0.0316 0.0878 0.0000 0.1138
Shift-x 8.6944 8.1211 0.0321 8.6573 0.0000 8.8979
Shift-y 10.2174 9.5540 0.2538 10.1193 0.0000 10.2239

IKONOS/NIR-ETM/Red
Scale 1.0641 1.0630 1.0765 1.0646 1.0981 1.0656

Rotation 0.0390 0.2133 -0.5836 0.0807 0.0694 0.1277
Shift-x 8.5615 7.9878 10.5558 8.5537 11.9510 8.7318
Shift-y 10.1641 9.5301 9.9043 10.1538 8.3562 9.9239

IKONOS/NIR-ETM/NIR
Scale 1.0647 1.0643 1.0649 1.0649 1.0648 1.0652

Rotation 0.1086 0.1024 0.0725 0.0714 0.0683 0.1096
Shift-x 8.6681 8.1394 8.7279 8.7094 8.6437 8.6629
Shift-y 10.1669 9.5819 10.1404 10.1394 10.1489 10.1561

ETM/Red-ETM/NIR
Scale 1.0000 0.9615 1.0000 1.0001 1.0000 1.0000

Rotation -0.0006 1.3168 -0.0079 -0.0087 -0.0085 0.0929
Shift-x 0.0793 4.7291 -0.1191 -0.1415 -0.0995 0.7340
Shift-y -0.0290 10.1447 -0.1663 -0.2173 -0.1334 0.9420

CASCADES_Mountains

 
Table 2b - Results of 6 algorithms on the Cascades-Mountainous Area 

 
V. CONCLUSION AND FUTURE WORK 

 The study presented in this paper deals with multi-sensor 
multi-resolution precision correction or image registration. 
Using gray levels or wavelet features, several similarity 
metrics and search strategies were being tested using 
synthetic data as well as IKONOS versus Landsat data over 
four well-chosen EOS Land Validation Core Sites.  
 
 Current and future work will involve a systematic study 
involving: 
- all possible combinations of components to form the 

algorithms and their application to all datasets, 
- an extended synthetic dataset with noise added, radiometric 

transformation applied, and systematic transformations in 
well-chosen ranges of rotations, translations and scaling. 

- a larger number of sensors for multi-sensor data 
registration.  

- potentially, the application of this framework to the 
registration of MARS data. 

From all these tests, we will be able to categorize the 
different algorithms in terms of their accuracy but also in 
terms of their sensitivity to initial (i.e., navigation) 
conditions, their computational and memory requirements, 
and as well as their implementations on high-performance 
and reconfigurable implementations. 
 
 Results of this study will be useful for 2 different purposes: 
(1) provide automatic quality assessment of the geo-location 
of remote sensing data by performing inter-algorithm 
consistency studies; (2) be the foundations for the design of 
future on-board applications and potentially planetary 
exploration.  
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